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Abstract

As the successor to SUNMOS [8], the Puma operating
system provides a flexible, lightweight, high performance
message passing environment for massively parallel com-
puters. Message passing in Puma is accomplished through
the use of a new mechanism known as a portal. Puma is cur-
rently running on the Intel Paragon and is being developed
for the Intel TeraFLOPS machine.

In this paper we discuss issues regarding the develop-
ment of the Argonne National Laboratory/Mississippi State
University implementation of the Message Passing Interface
standard on top of portals. Included is a description of the
design and implementation for both MPI point-to-point and
collective communications, and MPI-2 one-sided communi-
cations.

1. Introduction

1.1. MPICH

MPICH is a portable implementation of the Message
Passing Interface (MPI) [3] standard developed jointly by
Argonne National Laboratory and Mississippi State Univer-
sity. MPICH contains an abstract device interface (ADI)
upon which a high-level message passing application pro-
grammer interface such as MPI can be implemented. The
ADI performs four main functions[6]: sending and receiv-
ing, data transfer, queueing, and device-dependent func-
tions.

Porting MPICH to an architecture such as the Paragon
involves the creation of new “device” that interacts with the
ADI through a set of routines (see [5] for details) and han-
dles. These handles are used to cache device specific data
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to pass information between the device independent and de-
vice dependent layers of MPICH.

1.2. Puma and Portals

Puma is an operating system designed to provide a flexi-
ble, lightweight, high performance message passing envi-
ronment for massively parallel computing[11]. Message
passing in Puma is accomplished through the use of por-
tals, which are structures that inform the kernel how and
where incoming messages should be deposited. Each ap-
plication is allotted a finite number of portals in a portal
table, and each entry in the portal table has an associated
memory descriptor which describes how the memory is ar-
ranged. Messages destined for a particular portal table entry
are deposited according to the type of memory descriptor
attached to it. Additionally, matching lists may be attached
to a portal table entry in order to provide further selection
criteria for messages destined for a particular portal. Each
match list entry contains 64 match bits and 64 ignore bits.
The ignore bits can be used to mask off insignificant match
bits. These matching lists in turn have memory descriptors
associated with them. There are four basic types of memory
descriptors.

The most basic is the single block memory descriptor,
which describes a single contiguous block of memory. Mes-
sages destined for a portal with single block memory de-
scriptor attached may be deposited anywhere within this
single contiguous region.

A dynamic block memory descriptor describes a con-
tiguous block of heap memory. The Puma kernel main-
tains a list of free memory blocks and a list of messages
that have arrived. Messages destined for a portal with a dy-
namic block memory descriptor attached will be deposited
in the first available space within this heap, and the message
will be added to the end of an incoming message queue.

The independent block memory descriptor describes a
table of possibly noncontiguous buffers. An independent



block contains a buffer descriptor table, each entry of which
describes a contiguous block of memory. A message des-
tined for a portal with an independent block memory de-
scriptor attached will be deposited in the first available
buffer in the buffer descriptor table.

Finally, the combined block memory descriptor de-
scribes a logically contiguous but possibly physically dis-
contigous block of memory. This descriptor is almost iden-
tical to an independent block descriptor, but rather than de-
positing a message into a single buffer, a message destined
for this descriptor will keep filling successive buffers in the
buffer descriptor table until reception is complete.

Each type of memory descriptor also has several config-
urable options regarding how to respond to incoming mes-
sages and how to progress through buffer lists. The follow-
ing describes the options for each descriptor type:

� Single block:

– Sender or receiver managed offset

– Save message header only, save message body
only or save both header and body

– Read only or write only

– Acknowledge sender

� Dynamic block:

– Save message header only or save both header
and body

– Acknowledge sender

� Independent block:

– Circular or linear buffer list

– Save message header only or save both header
and body

– Acknowledge sender

– Read only or write only

� Combined block:

– Sender or receiver managed offset

– Read only or write only

– Acknowledge sender

Certain descriptors may also be overlayed so that the
same memory region is accessed or manipulated by mul-
tiple match list entries or portals. For example, a match
list entry may be overlayed onto another match list entry
which has an independent block memory descriptor. Mes-
sages which are destined for either match list entry update
the same independent block buffer table.

A match list is a linked list of match entries. When a
message arrives for a portal with a match list attached, the

kernel traverses the list, comparing the group, rank, and
match bits in the incoming message header to those in each
match list entry. When a match is found, the kernel then
attempts to deposit the message into the associated memory
descriptor.

There are three types of failure the kernel can experience
at each match list entry. The kernel can fail because the
matching criteria are not met, because the memory descrip-
tor has no available buffer, or because the available buffer
is too small to hold the incoming message. Each entry can
specify the next successive entry to which the kernel should
proceed upon encountering any of these three failures.

Many of the options used by the different memory de-
scriptors require information contained in the incoming
message. The send side is responsible for providing this
information depending on the type of send. For example, a
memory descriptor that is configured to send an acknowl-
edgment back to the sender needs to know to which portal
the acknowledgment needs to return and what the match
bits should be. Similarly, a sender managed memory de-
scriptor needs to get the desired offset from the incoming
message. The following values are required for the short
message protocol: send buffer, number of bytes, destination
offset, destination group, destination rank, destination por-
tal, and destination match bits. In addition, the following
values are needed for long and synchronous message pro-
tocols: return match bits, return portal, return length, return
offset, and user data (twelve bytes). The configuration of
the destination portal and memory descriptor will determine
how and if some of these values are used. For example, a
message that is destined for a portal with a memory descrip-
tor attached, but no match list, with ignore the destination
matchbits.

2. Point-to-Point Design and Implementation

A two-level protocol was decided upon at the outset to
provide low latency for shorter messages and high band-
width for larger ones. Figure 1 illustrates the portal used
for receiving messages. The entry in the portal table points
to a match list that contains an entry for each active receive
that has been posted. The match bits for posted receives are
used as follows:

� 32 bits for message tag

� 16 bits for local source rank

� 13 bits for context identifier

� 3 bits for message type

Each match list entry for a posted receive uses an inde-
pendent block memory descriptor configured to save both
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Figure 1. Receive portal.

the message header and the message body. Each indepen-
dent block memory descriptor contains only one buffer. A
single block memory descriptor cannot be used because a
single block can only save incoming data and not header in-
formation. A posted receive needs header information in or-
der to distinguish between different protocols and to obtain
message tag and source values should these be wildcarded.

The final two entries in the match list are used to catch
and queue unexpected messages for each protocol. The first
catchall entry has a dynamic block memory descriptor con-
figured to save both the message header and the message
body. The second catchall entry also has a dynamic block
memory descriptor, but is configured to save only the mes-
sage header. The second catch all entry is overlayed on top
of the first catchall entry so that both entries use the same
heap list structure, insuring correct ordering for unexpected
messages. The three bits for message type in the match
bits are used to choose the catchall entry in which unex-
pected messages are buffered. For the short catchall entry,
the matchbits are configured to ignore all bits except the
first three, which must be zero. The long catchall entry is
likewise configured to ignore all bits except the first three,
the third of which must be set. Messages with the first mes-
sage type bit set are ready send messages which must have
a pre-posted receive. Consequently, these message have no
overflow buffer and will simply be discarded if there is no
pre-posted receive. The second message type bit is used to
distinguish between regular messages and reply messages
which the receiver has requested. The match list entries for
pre-posted receives are configured to ignore the ready send
and long send message type bits.

Figure 2 illustrates the portals needed for sending mes-
sages. The first entry in the portal table contains a match
list that is used for collecting acknowledgments from the
receivers. Each acknowledgment is a message header with

the result (saved header, saved body, or saved header and
body) of the message reception contained in the first byte of
the twelve byte user data portion of the header. Each entry
contains an independent block memory descriptor config-
ured to save only the message header.
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Figure 2. Send portals.

The second entry in the portal table contains a match list
where each entry contains a single block memory descriptor
configured to reply. A message destined for this type of
read portal will cause the data in the appropriate buffer to
be replied back to the original message’s point of origin.

Because the match bits for both the read portal and the
acknowledge portal must be unique for each send request,
the first 32 match bits are set to the address of the device
independent handle associated with the send request, while
the second 32 bits are set to the address of the device de-
pendent handle.

Figure 3 illustrates a short protocol send operation. Then
sender sends both a message header and user data to the
receive portal at the destination. The destination matchbits
are set appropriately for the tag, the context identifier, rank
within the communicator, and message type. The protocol
type is also encoded in the user data portion of the message
header. The short protocol send operation is complete once
the kernel finishes delivering the message.

For the long send protocol (Figure 4), the sender uses
an eager protocol where both the message header and the
data are sent to the receiver. However, if there is no posted
receive for a long message, only the header is saved, and
the receiver must pull the message from the sender. After
a message is sent, the sender waits for an acknowledgment.
If a receive was pre-posted and the message was saved di-
rectly into the user buffer, the acknowledgment will indi-
cate that both header and body were saved. If no receive
was pre-posted, the message header will be saved in the dy-
namic heap and the acknowledgment will indicate that only
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Figure 3. Short send protocol.

the header was saved. The sender must then wait for the ap-
propriate number of bytes to be read from the single block
portal.

To post a short protocol receive, a free receive match
list entry is obtained and the necessary matching criteria is
added. For short protocol receives, an independent block
memory descriptor configured to save both header and body
with no acknowledgment is attached to the entry. However,
the entry is not activated until a search of the dynamic heap
is performed. If there is an unexpected message stored in
the dynamic heap that matches the receive that is being pro-
cessed, the message is copied out of the heap and the space
in the heap is freed. If the search of the heap is unsuccess-
ful, the entry is activated. This operation must be atomic to
insure that the kernel doesn’t deposit a message in the dy-
namic heap between the time the heap is searched and the
entry is activated. Message arrival on the entry is signalled
by an update of the bytes written to the memory descriptor.
Necessary header information is extracted when the mes-
sage arrives.
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Figure 4. Long send protocol.

For the long protocol on the receive side, the match list
entry is prepared in the same way as with the short proto-
col. However, the independent memory descriptor that is
attached to the match list entry is configured to acknowl-
edge the result back to the sender upon receipt of a mes-
sage. Also, if a matching message header is found in the
dynamic heap, the match bits are changed to accept a pulled

message, and a message is sent to the sender to pull the data
across. Figure 5 illustrates the long protocol where the mes-
sage must be pulled by the receiver.
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Figure 5. Long send read protocol.

The basic short and long protocols are extended to in-
clude an extra acknowledgment for synchrounous mes-
sages. Synchronous acknowledgements are sent to the
same portal as long send acknowledgments. For short syn-
chronous messages, the return match bits are contained in
the user data of the message header. In Figure 6 when a
synchrounous message is received, either by the posted re-
ceive or copied out of the heap, the receiver sends back a
synchronous acknowledgment. In the long protocol, if the
message is saved to a posted receive, the situation is simi-
lar to the short synchronous protocol. For long synchronous
messages that are pulled, the extra acknowledgment is sent
upon arrival of the pulled messages (Figure 7).
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Figure 6. Short synchrounous send protocol.
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3. Collective Communications Design and
Implementation

In the Puma MPICH ADI, the collective communication
operations are mapped to the native Puma collective com-
munications which are built on top of Puma portals. This
section discusses the implementation of the Puma collec-
tive communications on top of portals as it relates to MPI
collective communications.

The native Puma collective communications are primar-
ily interested in high performance collective communica-
tion with contiguous data over the entire range of vector
lengths. They make use of hybrid techniques developed at
the University of Texas [1, 10, 2] to achieve this full range
of performance. The hybrid techniques use the physical
multi-dimensional nature of an interconnect to maximize
bandwidth and minimize message contention for long mes-
sages. For short messages, the hybrids make use of logical
multi-dimensional mappings within each physical dimen-
sion (dimensional rings) to form new near-optimal short
message algorithms. For medium length messages, the hy-
brids evaluate whether to use a short or long message al-
gorithm in each logical/physical dimension to gain the best
performance.

Since the implementation on top of portals concerns it-
self primarily with the short and long building block algo-
rithms, this section will restrict discussions to the short/long
building block implementations. Once these implementa-
tions are optimized, the advantages of the hybrids can be
incorporated directly.

Match
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Figure 8. Portal structures for short message
algorithms

3.1. Short Message Protocols

The best point-to-point short message algorithms embed
a minimum spanning tree within the participating group of
nodes in such a way as to enable the sending and receiving
of contention free messages based on the structure of the
tree. To support such a communication pattern, the Puma
MPI collective communications use the structures as illus-
trated in Figure 8.

Consider the collective operation MPIBcast() for short
messages. Before the application enters main(), the match
list, and message heap are setup and initialized. The single
block memory buffer is not present. When a child enters
MPI Bcast(), it checks whether the message has arrived in
the message heap. If it hasn’t, then the child sets up the
single block buffer for the message that will be arriving.
Upon entering MPIBcast(), the root node immediately be-
gins sending to its children within the minimum spanning
tree. It is possible that a parent may be sending before its
children have reached MPIBcast(). If this is the case, then
the broadcast message is placed in the child’s message heap
as soon as it arrives.

This implementation has advantages in that it both
avoids unnecessary memory copies when a child enters
MPI Bcast() before the parent, and does not hold up the
parent if a child is not ready. For longer messages, it may
be desirable to avoid memory copies completely, in which
case it is worthwhile to add an additional handshake be-
tween parent and child to make sure the child is ready be-
fore the parent sends.

In this description, MPIBcast() was used as an ex-
ample collective operation. Other MPI operations such
as MPIScatter(), MPIGather(), MPIAllgather(), etc., all
have minimum spanning tree algorithms [1] that would
make use of the same portal structures for short messages.

Features that have not been implemented which are read-
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Figure 9. Bucket algorithm implementation
for MPI Allgather()

ily supported by this design include:

� multiple simultaneous collective operations

� asynchronous collective operations (via handler or co-
processor)

3.2. Long Message Protocols

For long messages1, versions of the “bucket” algorithm
or “ring” algorithm have proven to be the most efficient,
since the amount of data traversing the network is less than
the amount transfered using a minimum spanning tree algo-
rithm. Figure 9 illustrates the steps in a bucket algorithm
for the MPI Allgather() operation. At each time step, ev-
ery process sends a piece of the message to one neighbor
and receives a piece from another. Bucket algorithms are
also natural for MPIReduce(), MPIReducescatter(), and
MPI Allreduce().

It is clear from Figure 9 that bucket algorithms are very
lock-step in nature. As a result, it makes sense that a send-
ing neighbor would synchronize with its receiving neighbor
and then stream the pieces of the message into the wait-
ing buffer. Figure 10 illustrates the portal structures nec-
essary for supporting this mechanism. Each process sets
up the receive buffer locally in the single block portal and
sends a message to the sending neighbor announcing that
it is ready to receive. In the mean time, it will wait for a

1Long messages refer to messages with lengths larger than say
10Kbytes depending on the bandwidth and latency measurements for
a given architecture and the number of processes participating in the
operation.
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Figure 10. Portal structures for long message
(bucket/ring) algorithms

ready-to-receive message from its receiving neighbor to ar-
rive in its independent block portal2. The ready-to-receive
message will tell the process that a buffer is available at the
receive neighbor and streaming data can begin. The process
can watch the message counter on its single block portal to
make sure it does not get ahead of the sending neighbor.

This long message portals implementation makes use of
the lock-step characteristic of bucket algorithms to avoid
memory copies which are costly for long messages. It ac-
complishes this by synchronizing with its neighbors and by
following up with streaming data into the appropriate re-
ceive buffer. Also, this implementation cuts down on addi-
tional costs by being able to eliminate the need for an addi-
tional indirection through a match list.

It is worth noting that by switching out the single block
memory descriptor and replacing it with a combined block
memory descriptor, this design would support MPI non-
contiguous datatypes.

3.3. Implementation Issues

In the management of both the short and long message
building blocks, issues with race conditions and dropped
messages due to overlapping collective operations arise and
must be dealt with. Since all portal structures are in user
space, race conditions can occur between the kernel and the
process when both access the same structures at the same
time. Cooperation between the kernel and the libraries can
ensure that the race conditions do not occur.

Using the structures above, it is possible for back to back
“fan-in” minimum spanning tree operations to overlap and
lose messages. This is because in “fan-in” algorithms, for
instance in MPIGather(), the leaf nodes can send their first
contribution, enter the second MPIGather() and send their

2If there are no overlapping bucket collective algorithms, then one
could use the faster zero length single block memory descriptor instead of
an independent block memory descriptor which saves a message header.



second contribution before the parent is ready for the sec-
ond gather operation. One could either use separate portals,
sequence numbers, or some other form of matching criteria
to ensure that overlapping collective operations are handled
properly.

4. One Sided Communications

A proposal for one sided communications is currently
under consideration by the MPI-2 Forum. One sided com-
munications is an extension to the communications mecha-
nisms of MPI allowing for remote memory access (RMA)
where the transfer of data from the memory of one process
to the memory of another process occurs with only the ex-
plicit involvement of one of these processes [9]. This pro-
posal hopes to provide an interface for taking advantage of
the opportunities for high performance RMA on those sys-
tems that have dedicated RMA hardware, such as the Cray
T3D [4], systems with communications coprocessors, such
as the Intel Paragon, and on shared memory mulitprocessor
systems. The current proposal contains functions for ini-
tialization, remote memory reads and writes, atomic mem-
ory updates, remote synchronization, and message handlers.
The initialization and RMA access functions provide the ba-
sis for doing one sided communications.

The design of Puma provides for doing efficient RMA
operations. Because portals allow for writing into and read-
ing out of (using reply portals) the memory of a remote pro-
cess without the process’ explicit involvement, Puma has
the capability to do RMA communications easily and ef-
ficiently. Cache coherency is maintained for all incoming
messages.

The current proposal includes two functions for initial-
ization. The first isMPI RMA init() which exposes a win-
dow of memory to RMA communications and returns a
communicator enabled for peforming both RMA operations
and normal MPI communications. The second is a routine
for allocating special memory which is provided for those
platforms where a different type of memory must be used
for RMA. Puma provides the capability to write into any
memory in an application’s address space, so the RMA allo-
cation function is equivalent to the standardmalloc() func-
tion.

The current proposal has four functions for RMA access:
MPI Put(), MPI Get(), MPI Iput(), andMPI Iget(). When
used with the communicator returned byMPI RMA init(),
the put functions perform a remote write of the data sup-
plied at the origin process into the exposed window at the
target process. The get functions peform a remote mem-
ory read of the exposed window at the target process, de-
positing the data into a supplied buffer on the origin pro-
cess. The non-blocking versions return a request handle
that may be used with any of the normal MPI wait or test

functions. These functions also contain an offset argument
so that reads and writes can be initiated at an offset from the
base of the window.

4.1. Design and Implementation

Figure 11 illustrates the portals used for RMA opera-
tions. Two portal table entries are used for RMA, one for
puts and one for gets. In theMPI RMA init() function, the
next available match list entry for the put portal is obtained.
The first 32 match bits in this entry are set to the the send
context identifier in the RMA communicator. The second
32 match bits are set to a special tag value. A sender-
managed single block memory descriptor referencing the
RMA window is attached to the entry. Similarly, the next
available match list entry for the get portal is obtained, and
the match bits are set to the receive context on the RMA
communicator and a special tag value. A sender-managed
single block reply memory descriptor referencing the same
RMA window is attached to the get match list entry.

The put functions send a message to the designated put
portal on the target process with the destination match bits
set to the send context of the communicator and the correct
byte offset calculated from the offset arguments to the func-
tion. The put operation completes as soon as the message
is sent. A blocking put requires no further action, while
a non-blocking put must build a request handle that is im-
mediately marked completed. Therefore, non-blocking puts
have a degradation in performance over blocking puts. Put
operations maintain pairwise ordering.

The get function begins by posting a receive for the reply
message. Posting a receive is done exactly as if the receive
were being posted for a normal MPI message, with a few
exceptions. The matchbits for this receive are set to the re-
ceive context of the communicator and the special tag value,
in order to avoid mixing RMA communications with regular
MPI communications. Instead of attaching an independent
block memory descriptor to the match entry, a single block
descriptor can be used. A message is then sent to the des-
ignated get portal on the target process with the destination
match bits set to the receive context of the communicator
and the correct byte offset calculated from the offset argu-
ments to the function. And in addition, the requested return
portal is the local receive portal and the return matchbits
are set appropriately. The blocking version of get is imple-
mented by calling the non-blocking version and waiting for
the request to complete.

5. Future Work

A concerted effort is being made to increase the perfor-
mance of Puma to be at least that of its predecessor. MPI
has yet to be tested under the various coprocessor modes
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Figure 11. Put and Get Portals.

being developed, and some base functionality still needs to
be implemented at the operating system level.

The combined block memory descriptor was designed
to be used for operations with non-contiguous datatypes.
However, the combined block has yet to be implemented.
Consequently, non-contiguous datatypes are packed and un-
packed into contiguous buffers. For one sided communica-
tions, each block in the datatype generates a separate mes-
sage so that the offset can be used properly. Combined
block memory descriptors will greatly reduce this cost.

For the ASCI/DOE TeraFLOPS machine, hybrid tech-
niques will be incorporated into MPI collective operations
in order to take advantage of the topology of the ma-
chine. In addition, once combined blocks are implemented,
the collective operations will be modified to support non-
contiguous datatypes.

Effort is nearly completed on a new ADI for MPICH [7].
The goal of this next generation ADI is to achieve lower
latencies and remove as much overhead as possible, espe-
cially when handling messages with contiguous datatypes.
Providing better support for multi-protocol devices and het-
erogeneous systems are additional goals. Work has already
begun on moving this implementation to the new ADI.
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